Mysql数据库服务器4核,批量写入1万条数据、每条数据4个字段 性能测试:
1、常规for循环一条条写入 (这种方式波动比较大,基本在60-120s之间)
startTime = time.time() for i in range(10000): db.session.add( Test( blog_name='阿汤博客{}'.format(i), blog_url='https://www.amd5.cn/'.format(i), blog_desc='我是阿汤博客,地址是https://www.amd5.cn/'.format(i), create_time=datetime.datetime.now() ) ) db.session.commit() endTime = time.time() diff = round(endTime - startTime, 3) print("耗时:{}s").format(diff) 耗时:95.468s
2、通过bulk_save_objects批量写入
startTime = time.time() db.session.bulk_save_objects( [ Test( blog_name='阿汤博客{}'.format(i), blog_url='https://www.amd5.cn/'.format(i), blog_desc='我是阿汤博客,地址是https://www.amd5.cn/'.format(i), create_time=datetime.datetime.now() ) for i in range(10000) ] ) endTime = time.time() diff = round(endTime - startTime, 3) print("耗时:{}s").format(diff) 耗时:0.695s
3、通过bulk_insert_mappings批量写入
startTime = time.time() db.session.bulk_insert_mappings( Test, [ dict( blog_name='阿汤博客{}'.format(i), blog_url='https://www.amd5.cn/'.format(i), blog_desc='我是阿汤博客,地址是https://www.amd5.cn/'.format(i), create_time=datetime.datetime.now() ) for i in range(10000) ] ) endTime = time.time() diff = round(endTime - startTime, 3) print("耗时:{}s").format(diff) 耗时:0.658s
4、原生insert批量写入
startTime = time.time() db.session.execute( Test.__table__.insert(), [ { "blog_name": '阿汤博客{}'.format(i), "blog_url": 'https://www.amd5.cn/'.format(i), "blog_desc": '我是阿汤博客,地址是https://www.amd5.cn/'.format(i), "create_time": datetime.datetime.now() } for i in range(10000) ] ) endTime = time.time() diff = round(endTime - startTime, 3) print("耗时:{}s").format(diff) 耗时:0.434s
总得来说,只要不是使用第一种方式批量写入,基本上不会有太大的性能问题。